Tentukan penyelesaian dari SPLDV berikut ini dengan metode substitusi:
x + y = 8
2x + 3y = 19
Jawab :
x + y = 8…. (1)
2x + 3y = 19 … (2)
x + y = 8
x = 8- y
Subtitusikan x = y – 8 ke dalam persamaan 2
2 (8- y) + 3y = 19
16 - 2y + 3y = 19
16 + y = 19
y = 3
Subtitusikan y = 3 ke dalam persamaan 1
x + 3 = 8
x = 5
Jadi, penyelesaian dari SPLDV tersebut adalah x = 5 dan y = 3
Contoh Soal 2
Tentukan penyelesaian dari SPLDV berikut dengan metode eliminasi:
2x – y = 7
x + 2y = 1
Jawab :
Eliminasi x
2x – y = 7 | x1 --> 2x – y = 7 ... (3)
x + 2y = 1 | x2 --> 2x – 4y = 2 ... (4)
2x – y = 7
x + 2y = 1 -
-5y = 5
y = -1
Eliminasi y
2x – y = 7 | x2 --> 4x – 2y = 14 ... (5)
x + 2y = 1 | x1 --> x + 2y = 1 ... (6)
4x – 2y = 14
x – 2y = 1 -
5x =15
x = 3
Jadi, penyelesaian dari SPLDV tersebut adalah x = 3 dan y = -1
Contoh Soal 3
Tentukan penyelesaian dari SPLDV berikut dengan metode campuran:
x + y = -5
x – 2y = 5
jawab :
Eliminasi x
x + y = -5
x – 2y = 5 -
3y = -9
y = -3
Substitusi y
x + (-3) = -5
x = -2
Jadi, penyelesaian dari SPLDV tersebut adalah x = -2 dan y = -3
Contoh Soal 4
Umur Melly 7 tahun lebih muda dari umur Ayu. Jumlah umur mereka adalah 43 tahun. Tentukanlah umur mereka masing-masing !
Jawab :
Misalkan umur melly = x dan umur ayu = y, maka
y – x = 7… (1)
y + x = 43… (2)
y = 7 + x
subtitusikan y = 7 + x kedalam persamaan 2
7 + x + x = 43
7 + 2x = 43
2x = 36
x = 18
y = 7 + 18 = 25
Jadi, umur melly adalah 18 tahun dan umur ayu 25 tahun.
sebuah taman memiliki ukuran panjang 8 meter lebih panjang dari lebarnya. Keliling taman tersebut adalah 44 m. tentukan luas taman !
Jawab :Luas taman = p x l
P = panjang taman
L = lebar taman
Model matematika :
P = 8 + l
k = 2p + 2l
2 ( 8 + l) + 2l = 44
16 + 2l + 2l = 44
16 + 4l = 44
4l = 28
l = 7
P = 7 + 8 = 15
Luas = 7 x 15 = 105 m2
Jadi, luas taman tersebut adalah 105 m2
sumber : http://www.rumusmatematikadasar.com
Pak Sarif memiliki sebidang tanah berbentuk persegi panjang, Lebar tanah tersebut 5 meter lebih pendek dari panjangnya. Keliling tanah pak Sarif adalah 50 meter. Berapakah ukuran panjang dan lebar tanah Pak Sarif?
Penyelesaiannya :
Diketahui : keliling tanah = 50 m
Misalkan ukuran panjang tanah = x, maka lebar tanah = x -5
Keliling tanah = keliling persegi panjang
50 = 2 ( p + l)
50 = 2 ( x + x – 5)
50 = 2 ( 2x – 5)
50 = 4x – 10
50 + 10 = 4x
60 = 4x
60 : 4 = x
15 = x
Panjang tanah = x = 15 meter
Lebar tanah = x – 5 = 15 – 5 = 10 meter
Contoh Soal 2
Diketahui jumlah tiga bilangan genap yang berurutan adalah 66. Tentukanlah bilangan yang paling kecil!
Penyelesaiannya :
Diketahui : Tiga bilangan genap berjumlah 66
Bilangan genap memiliki pola +2, misalkan bilangan genap yang pertama adalah x, maka bilangan genap kedua dan ketiga berturut-turut adalah x + 2, dan x + 4, sehingga:
Bil.1 + Bil.2 + Bil. 3 = 66
x + (x+2) + (x+4) = 66
3x + 6 = 66
3x = 60
x = 20
bilangan genap pertama = x = 20
bilangan genap kedua = x + 2 = 20 + 2 =22
bilangan genap ketiga = x + 4 = 20 + 4 = 24
Contoh Soal 3
Nilai x yang memenuhi persamaan 3x + 5 = 14 adalah…
Penyelesaiannya :
3x + 5 = 14
3x = 14 – 5
3x = 9
x = 9 : 3
x = 3
Contoh Soal 4
Untuk persamaan 4x + y = 12, jika x = -1 maka y adalah…
Penyelesaiannya :
4( -1) + y = 12
-4 + y = 12
y = 12 + 4
y = 16
Contoh Soal 5
Nilai x yang memenuhi persamaan 5x- 7 = 3x + 5 adalah..
Penyelesaiannya :
5x- 7 = 3x + 5
5x – 3x = 5 + 7
2x = 12
x = 6
sumber : http://www.rumusmatematikadasar.com
Pertama-tama kalian harus memperhatikan gambar limas segitiga sama sisi (bidang empat beraturan) T.ABC berikut ini:
Bila diperhatikan, pada bangun ruang di atas terdapat empat buah segitiga sama sisi yang luasnya tentu saja sama. Segitiga sama sisi itu adalah ΔABC, ΔBCT, ΔACT, dan ΔABT. Rumus mudah dan cepat untuk menghitung lkuas segitiga sama sisi tersebut adalah:
L.Δ = ¼s2√3
Ada empat permukaan bidang empat (limas segitiga sama sisi) dengan luas yang sama pada gambar di atas, maka:
L = 4 × L.Δ
L = 4 × ¼s2√3
L = s2√3
Jadi, rumus untuk mencari volume (V) bidang empat beraturan yang memiliki panjang rusuk (s) adalah:
L = s2√3
Contoh Soal 1:
Diketahui sebuah bidang empat beraturan mempunyai panjang rusuk 8 cm. Berapakah luas permukaan bidang empat beraturan tersebut?
Penyelesaiannya:
L = s2√3
V = (8 cm)2√3
V = 64√3 cm2
Jadi, luas permukaan bidang empat beraturan tersebut adalah 64√3 cm2
sumber : http://www.rumusmatematikadasar.com
Diketahui panjang rusuk sebuah kubus ABCD.EFGH adalah 6cm. Maka hitunglah jarak:
a).titik D ke garis BF
b).titik B ke garis EG
Penyelesaiannya:
a).Agar lebih mudah dalam menjawabnya, mari kita perhatikan gambar di bawah ini:
Dari gambar di atas kita bisa melihat bahwa jarak titik D ke garis BF adalah panjang diagonal BD yang dapat ditentukan dengan menggunakan teorema phytagoras ataupun dengan rumus. Mari kita selesaikan dengan teorema phytagoras terlebih dahulu:
BD2 = AB2 + AD2
BD2 = 62 + 62
BD2 = 72
BD = √72 = 6√2 cm
beikut bila kita mencarinya dengan menggunakan rumus:
d = s√2
BD = AB√2
BD = (6 cm)√2
BD = 6√2 cm
Maka, jarak titik D ke garis BF adalah 6√2 cm
b). Sama halnya dengan soal a) kita juga harus membuat gambarnya terlebih dahulu agar lebih mudah mengerjakannya.
Dari perhitungan pada soal a) diketahui bahwa panjang diagonal sisi kubus FH = BD adalah 6√2 cm
Untuk mengetahui panjang BP, kita gunakan teorema phytagoras untuk segitiga siku-siku BFP:
FP = ½ FH = 3√2 cm
maka:
BP2 = FP2 + BF2
BP2 = (3√2)2 + 62
BP2 = 18 + 36
BP2 = 54
BP = √54 = 3√6 cm
Maka,jarak titik B ke garis EG adalah 3√6 cm
sumber : http://www.rumusmatematikadasar.com
Pada pertunjukan seni terjual 500 lembar karcis yang terdiri dari karcis kelas Ekonomi dan Karcis kelas Utama. Harga karcis kelas Ekonomi adalah Rp. 6000,00 dan kelas Utama adalah Rp. 8000,00 . Jika hasil penjualan seluruh karcis adalah Rp.3.360.000,00 . berapakah jumlah karcis kelas Ekonomi yang terjual ?
Penyelesaiannya :
Misal jumlah karcis kelas ekonomi = a, jumlah karcis kelas Utama= b
Maka
a + b = 500 …. (1)
6000a + 8000b = 3.360.000à 6a + 8b = 3.360… (2)
a + b = 500 | x 8
6a + 8b = 3.360| x 1
8a + 8b = 4000
6a + 8b = 3.360 –
2a = 640
a = 320
Jadi banyaknya karcis kelas ekonomi yang terjual adalah 320 karcis
Contoh Soal 2
Dea dan Anton bekerja pada pabrik tas. Dea dapat menyelesaikan 3 buah tas setiap jam dan Anton dapat menyelesaikan 4 tas setiap jam. Jumlah jam kerja Asti dan Anton adalah 16 jam sehari, dengan jumlah tas yang dibuat oleh keduanya adalah 55 tas. Jika, jam kerja keduanya berbeda tentukan jam kerja mereka masing-masing!
Penyelesaiannya :
Misal jam kerja Dea = a, jam kerja Anton = b
Maka
3a + 4b = 55 | x 1
a + b = 16 |x 3
3a + 4b = 55
3a + 3b = 48 –
b = 7
a = 16 -7 = 9
Jadi, Dea bekerja selama 9 jam dan Anton bekera 7 jam dalam sehari
Contoh Soal 3
Jumlah dua bilangan adalah 200. Dan selisih bilanga itu adalah 108. Tentukan lah bilangan yang paling besar diantara keduanya.
Penyelesaiannya :
Misal bilangan yang terbesar a, dan yang terkecil b
Maka
a + b = 200
a – b = 108 +
2a = 308
a = 154
Jadi, bilangan yang terbesar adalah 154
Contoh Soal 4
Aldi membeli 4 buku dan 5 pensil seharga Rp.24.000,00 . ida membeli 6 buku dan 2 pulpen seharga Rp. 27.200,00. Jika Mira ingin membeli 3 buku dan 2 pensil berapa yang harus dibayar Mira?
Penyelesaiannya :
Misal buku = b, dan pensil = p
4b + 5p = 24.000 | x 2
6p + 2p = 27.200 | x 5
8b + 10p = 48.000
30p + 10p = 136.000 –
-22b = 88.000
b = 4000
4(4000) + 5p = 24.000
5p= 8000
p= 1600
3b + 2p = 3(4000) + 2(1600) = 15.200
Jadi, Mira harus membayar Rp. 15.200,00
Contoh Soal 5
Sebuah toko menjual dua jenis tepung sebanyak 50 kg. Tepung jenis I seharga Rp.6000,00 dan Tepung jenis II seharga Rp. 6.200,00. Seluruh tepung habis terjual dan pedagang mendapatkan Rp. 306.000,00. Buatlah model matematika dari persoaan tersebut!
Penyelesaiannya :
Misal berat tepung jenis I = x dan tepung jenis 2 = y
Maka
x + y = 50
6000x + 6200y = 306.000 à 60x + 62 y = 3.060
Jadi persamaanya adalah x + y = 50 dan 60x + 62 y = 3.060
sumber : http://www.rumusmatematikadasar.com
Contoh Soal:
Penyelesaian:
sumber : http://www.rumusmatematikadasar.com
Fungsi Komposisi
Dari dua jenis fungsi f(x) dan g(x) kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan dengan "o" (komposisi/bundaran). fungsi baru yang dapat kita bentuk dari f(x) dan g(x) adalah:
(g o f)(x) artinya f dimasukkan ke g
(f o g)(x) artinya g dimasukkan ke f
Contoh Soal 1:
Diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...
Jawab:
(f o g)(x) = g dimasukkan ke f menggantikan x
(f o g)(x) = 3(2x)-4
(f o g)(x) = 6x - 4
(g o f)(x) = f dimasukkan ke g menggantikan x
(g o f)(x) = 2(3x-4)
(g o f)(x) = 6x-8
Syarat Fungsi Komposisi
Contoh Soal 2
Misal fungsi f dan g dinyatakan dalam pasangan terurut :
f : {(-1,4), (1,6), (3,3), (5,5)}
g : {(4,5), (5,1), (6,-1), (7,3)}
Tentukan :
a. f o g d. (f o g) (2)
b. g o f e. (g o f) (1)
c. (f o g) (4) f. (g o f) (4)
Jawab :
Pasangan terurut dari fungsi f dan g dapat digambarkan dengan diagram panah berikut ini
a. (f o g) = {(4,5), (5,6), (6,4), (7,3)}
b. (g o f) = {(-1,5), (1,-1), (3,3), (5,1)}
c. (f o g) (4) = 5
d. (f o g) (2) tidak didefinisikan
e. (g o f) (1) = -1
Sifat-sifat Fungsi Komposisi
Fungsi komposisi memiliki beberapa sifat, diantaranya:
Tidak Komutatif
(g o f)(x) = (f o g)(x)
Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x)]
Fungsi Identitas I(x) = x
(f o I)(x) = (I o f)(x) = f(x)
Cara Menentukan fungsi bila fungsi komposisi dan fungsi yang lain diketahui
Misalkan jika fungsi f dan fungsi komposisi (f o g) atau (g o f) telah diketahui maka kita dapat menentukan fungsi g. demikian juga sebaliknya.
Contoh Soal 3
Misal fungsi komposisi (f o g) (x) = -4x + 4 dan f (x) = 2x + 2.
Tentukan fungsi g (x).
Jawab :
(f o g) (x) = -4x + 4
f (g (x)) = -4x + 4
2 (g (x)) + 2 = -4x + 4
2 g (x) = -4x + 2
g (x) = -4x + 2
2
g (x) = -2x + 1
Jadi fungsi g (x) = -2x + 1
Fungsi Invers
Apabila fungsi dari himpunan A ke B dinyatakan dengan f, maka invers dari fungsi f merupakan sebuah relasi dari himpunan A ke B. Sehingga, fungsi invers dari f : A -> B adalah f-1: B -> A. dapat disimpulkan bahwa daerah hasil dari f-1 (x) merupakan daerah asal bagi f(x) begitupun sebaliknya.
Cara menenukan fungsi invers bila fungsi f(x) telah diketahui:
Pertama
Ubah persamaan y = f (x) menjadi bentuk x sebagai fungsi dari y
Kedua
Hasil perubahan bentuk x sebagai fungsi y itu dinamakan sebagai f-1(y)
Ketiga
Ubah y menjadi x [f-1(y) menjadi f-1(x)]
Contoh Soal:
sumber : http://www.rumusmatematikadasar.com
sumber : http://www.rumusmatematikadasar.com
sumber : http://www.rumusmatematikadasar.com
Pertidaksamaan linear dapat diartikan sebagai sebuah pertidaksamaan dimana peubah bebasnya memiliki bentuk linear (berpangkat satu). coba kalian ingat lagi bentuk-bentuk pertidaksamaan berikut ini:
3x = 6 (pertidaksamaan linear dengan satu peubah)
2x + y < 0 (Pertidaksamaan linear dengan dua peubah)
2x + 3y - 4z >0 (Pertidaksamaan linear dengan tiga peubah)
Pda postingan ini saya akan membatasi penjelasan hanya pada pertidaksamaan linear dua peubah. Gabungan dari dua atau lebih pertidaksamaan linear dengan dua peubah dapat disebut sebagai pertidaksamaan linear dua variabel. Contoh dari sistem persamaan linear dua variabel adalah:
2x + 4y ≥ 16
x + y ≥ 8
x ≥ 0
y ≥ 0
Himpunan dan Daerah Penyelesaian Pertidaksamaan Linear Dua Variabel
Berikut ini adalah cara yang dapat dilakukan untuk menentukan himpunan ataupun daerah penyelesaian dari sistem pertidaksamaan dua variabel: ax + by ≤ c
Pertama, buatlah garis ax + by = c dengan cara menentukan dua titik yang berbeda pada garis tersebut di dalam diagram cartesius. Diagram kartesius nantinya akan terbagi menjadi dua bagian yang dipisahkan oleh garis itu.
Kedua, Lakukan subtitusi terhadap sebuah titik pada salah satu bagian ke dalam sistem pertidaksamaan tersebut. Jikalau hasilnya merupakan pernyataan yang benar, artinya daerah tersebut merupakan penyelesaiannya, akan tetapi bila pernyataanya salah maka bagian lain lah yang menjadi penyelesaiaanya.
Ketiga, arsirlah pada bagian yang menjadi daerah penyelesaian.
Untuk lebih jelasnya, perhatikan contoh soal berikut ini:
Contoh Soal 1
Coba tentukanlah daerah penyelesaian yang memenuhi sistem pertidaksamaan 2x + 3y ≤ 12
Jawab :
Gambar garis 2x + 3y ≤ 12, pilih dua titik
Apabila x = 0 maka :
2.0 + 3y = 12
3y = 12
y = 4 titik (0,4)
Apabila y = 0 maka:
2x + 3.0 = 12
2x = 12
x = 6 titik (6,0)
Pertama, pilihlah titik (0,0) kemudian subtitusikan titik tersebut ke dalam pertidaksamaan 2x + 3y ≤ 12. dari perhitungan di atas diketahui hasilnya adalah 2 x 0 + 3 x 0 ≤ 12 atau 0≤ 12 sehingga pernyataannya bisa dianggap benar. Sehingga dapat disimpulkan bahwa daerah penyelesaian dari pertidaksamaan tersebut berada pada daerah yang ada di bawah garis sampai kepada garis yang menjadi batas 2x + 3y = 12. Sehingga gambarnya menjadi:
sumber : http://www.rumusmatematikadasar.com
Kita bisa menggunakan rumus teorema pythagoras untuk mencari bidang diagonal pada persegi panjang apabila kita telah mengetahui panjang dan lebarnya. Sementara rumus pythagoras bisa kita gunakan untuk mencari bidang diagonal pada persegi apabila panjang sisinya telah diketahui. Untuk lebih jelasnya, simak contoh soal di bawah ini:
Contoh Soal 1
Diketahui sebuah persegi panjang memiliki panjang 20 cm dan lebar 15 cm. maka berapakah panjang salah satu diagonal pada persegi panjang tersebut?
Pembahasan:
Diagonal = √(panjang2 + lebar2)
Diagonal = √(202 + 152)
Diagonal = √400 + 225
Diagonal = √625
Diagonal = 25 cm
Mencari diagonal layang-layang dan belah ketupat
Rumus Pythagoras dapat kita gunakan untuk mencari salah satu diagonal pada layang-layang dan belah ketupat apabila telah diketahui panjang sisi dan salah satu diagonal sisinya. Coba perhatikan kedua contoh soal berikut:
Contoh Soal 2
Hitunglah luas dari bangun layang-layang di bawah ini:
Pembahasan:
Karena diagonal EG dan FH berpotongan di titik M, maka kita cari dulu panjang EM:
EM = ½ x EG
EM = ½ x 16
EM = 8 cm
Setelah itu, gunakan teorema pythagoras untuk mengetahui panjang FM dan HM:
FM = √(EF2 – EM2)
FM = √(152 - 82)
FM = √(225 - 64)
FM = √161
FM = 12,6 cm
HM = √(EH2 – EM2)
HM = √(202 – 82)
HM = √(400 – 64)
HM = √336
HM = 18,3 cm
Panjang diagonal FH adalah:
FH = FM + HM
FH = 12,6 + 18,3
FH = 30,9 cm
Sekarang kita cari luas dari layang-layang tersebut:
L = ½ x d1 x d2
L = ½ x EG x FH
L = ½ x 16 x 30,9
L = ½ x 494,4
L = 247,2 cm2
Contoh Soal 3
Perhatikan gambar belah ketupat berikut ini:
Apabila diketahui panjang sisi belah ketupat PQRS adalah 15 cm dan panjang salah satu diagonalnya adalah 24 cm, Maka berapakah luas dari belah ketupat tersebut?
Pembahasan:
Apabila perpotongan diagonal PR dan QS pada belah ketupat itu ada pada titik X, maka:
PX = ½ x PR
PX = ½ x 24
PX = 12 cm
Sekarang kita gunakan rumus teorema pythagoras untuk mengetahui panjang QX:
QX = √(PQ2 - PX2)
QX = √(152 - 122)
QX = √(225 - 144)
QX = √81
QX = 9 cm
QS = 2 x QX
QS = 2 x 9
QS = 18 cm
Sekarang tinggal menghitung luas belah ketupat tersebut:
L = ½ x d1 x d2
L = ½ x 24 x 18
L = ½ x 432
L = 216 cm2
Mencari tinggi trapesium dan jajar genjang
Untuk mengetahui bagaimana cara menggunakan rumus teorema pythagoras dalam mencari tinggi dari bangun datar trapesium ataupun jajar genjang, kalian bisa menyimaknya dalam contoh soal berikut ini:
Contoh Soal 4
Amatilah gambar trapesium berikut ini:
Apabila diketahui panjang sisi PR = 40 cm, RS = 40 cm, dan PQ= 64 cm. Berapakah luas dari trapesium di atas?
Pembahasan:
Kalian bisa lihat bahwa trapesium tersebut merupakan trapesium sama kaki maka kita bisa ketahui bahwa panjang PR = QS, panjang PT= UQ dan panjang RS = TU, sehingga:
Panjang PT = PQ – TU – UQ
Panjang PT = 64 cm – 40 cm – UQ
Karena UQ = PT, maka:
2 x PT= 24 cm
PT = 12 cm
Sekarang kita bisa mencari tinggi trapesium dengan menggunakan teorema pythagoras seperti berikut ini:
RT = √(PR2– PT2)
RT = √(402 – 122)
RT = √(1600 – 144)
RT = √1456
RT = 38,15 cm
Sekarang kita bisa mencari luas trapesium dengan rumus berikut:
L = ½ x jumlah sisi sejajar x tinggi
L = ½ x (PQ + RS ) x RT
L = ½ x (64 cm + 40 cm) x 38,15 cm
L = ½ x 3967,6
L = 1983,8 cm2
Contoh Soal 5
Hitunglah luas jajar genjang berikut ini:
Pembahasan:
Pertama-tama, kita cari dahulu panjang PT:
PQ = RS
PT + TQ = RS
PT = RS - TQ
PT = 30 - 25
PT = 5 cm
Kemudian kita cari tinggi dari jajar genjang di atas:
ST = √(PS2 – PT2)
ST = √(232 – 52)
ST = √(529 – 25)
ST = √504
ST = 22,4 cm
Barulah bisa kita cari luas dari jajar genjang tersebut:
L = a x t
L = PQ x ST
L = 30 cm x 22,4 cm
L = 673,4 cm2
sumber : http://www.rumusmatematikadasar.com
Transpose matriks memiliki beberapa sifat yang menjadi dasar di dalam operasi perhitungan matriks, yaitu:
(A + B)T = AT + BT
(AT)T = A
λ(AT) = (λAT), bila λ suatu scalar
(AB)T = BT AT
Contoh Soal dan Pembahasan Transpose Matriks
Berikut adalah salah satu contoh soal tentang transpose matriks dan pembahasan mengenai cara menjawab dan menyelesaikannya:
sumber : http://www.rumusmatematikadasar.com
Persamaan Nilai Mutlak dan Cara Penyelesaiannya
Contoh Soal 1
Cara Menyelesaikannya:
Contoh Soal 2
Cara Menyelesaikannya:
sumber : http://www.rumusmatematikadasar.com
Penjelasan Sifat-sifat Bilangan Pangkat Bulat Positif SMA Kelas X
Sifat Perkalian Bilangan Berpangkat Bilangan Bulat Positif
Sifat Pembagian Bilangan Berpangkat Bilangan Bulat Positif
4 x 4) / (4 x 4)
sumber : http://www.rumusmatematikadasar.com
Merupakan sebuah garis yang posisinya tegak lurus pada suatu bidang dimana garis tersebut tegak lurus terhadap setiap garis yang ada pada bidang tersebut.
Jarak titik dan garis
Jarak titik A dengan garis G merupakan panjang ruas dari garis AA' dimana titik A' merupakan proyeksi dari A pada g.
Jarak titik dan bidang
Jarak antara titik A dan bidang merupakan panjang dari ruas garis AA' dimana titik A' adalah proyeksi dari titik A pada bidang.
Jarak antara dua garis sejajar
Untuk mengetahui jarak antara dua garis sejajar, kita harus menggambar sebuah garis lurus diantara keduanya. Jarak titik potong yang dihasilkan merupakan jarak dari kedua garis itu.
Jarak garis dan bidang yang sejajar
Untuk menentukan jarak antara garis dan bidang adalah dengan membuat proyeksi garis pada bidang. Jarak antara garis dengan bayangannya adalah jarak garis terhadap bidang.
Jarak antar titik sudut pada kubus
Jarak antar titik sudut pada kubus dapat diketahui melalui rumus:
sumber : http://www.rumusmatematikadasar.com
Merupakan matriks yang memiliki jumlah baris dan kolom yang sama, misalnya 4x4, 2x2, atau 5x5. Sehingga ordonya dilambangkan n x n.
Matriks Baris
Adalah matriks yang hanya memiliki satu buah baris namun memiliki beberapa kolom. Matriks ini ordonya adalah 1 x n dimana n harus lebih besar dari 1. Contohnya 1 x 2, 1 x 4, 1 x 6, dsb.
Matriks kolom
Merupakan kebalikan dari matriks baris. Hanya terdiri dari satu kolom namun memiliki beberapa baris. Ordo dari matriks ini adalah n x 1 dimana n harus lebih besar dari 1. Contohnya adalah 2 x 1, 3 x 1, 5 x 1, dsb.
Matriks Mendatar
Adalah matriks yang memiliki jumlah kolom yang lebih banyak dibandingkan jumlah barisnya. Contohnya adalah 3 x 5, 4 x 6, dsb.
Matriks Tegak
Merupakan kebalikan dari matriks mendatar dimana jumlah barisnya lebih banyak dibandingkan jumlah kolomnya. Contohnya adalah 6 x 3, 4 x 2, 8 x 5, dsb.
Jenis Matriks Berdasarkan pada Pola Elemennya
Matriks Nol
Merupakan matriks dengan ordo m x n dimana seluruh elemennya memiliki nilai nol.
Matriks Diagonal
Merupakan matriks persegi yang elemennya bernilai nol kecuali pada diagonal utamanya.
Matriks Identitas
Adalah matriks yang diagonal utamanya di isi dengan elemen bernilai 1 sementara elemen yang lain nilainya adalah nol.
Matriks Segitiga Atas
Adalah matriks yang keseluruhan nilai dibawah diagonal utamanya adalah nol.
Matriks Segitiga Bawah
Merupakan kebalikan dari matriks segitiga atas dimana seluruh elemen yang ada di atas diagonal utamanya bernilai nol.
Matriks Simetris
Merupakan sebuah matriks dimana elemen yang ada di atas dan dibawah doagonal utamanya memiliki susunan nilai yang sama.
Matriks Skalar
Adalah matriks yang memiliki elemen diagonal utama bernilai sama sementara elemen yang lain nilainya adalah nol.
sumber : http://www.rumusmatematikadasar.com
Materi Barisan dan Deret Aritmatika Terlengkap
Pengertian Barisan Aritmatika
Pengertian Deret Aritmatika
Sisipan pada Deret Aritmatika
sumber : http://www.rumusmatematikadasar.com
Di dalam materi pelajaran matematika kelas 10 tentu kalian telah mempelajari konsep eksponen bentuk bilangan bulat. Sebelum mempelajari materi mengenai eksponen yang ada di dalam artikel ini maka sebaiknya kalian ingat kembali sifat bilangan berpangkat rasional. Apabila a dan b merupakan bilangan real, p dan q merupakan bilangan rasional makan hubungan yang berlaku adalah sebagai berikut:
Dalam materi mengenai eksponen untuk kelas 12 akan dibahas lebih mendetail mengenai perpangkatan dimana pangkatnya merupakan suatu fungsi. Bentuk perpangkatan tersebut disebut dengan fungsi eksponen.
Fungsi eksponen memiliki banyak manfaat dalam kehidupan sehari hari sebagai contoh fungsi ini digunakan dalam proses peluruhan radioactive, proses pertumbuhan tanaman, serta konsep perhitungan bunga tabungan yang ada di bank dan masih banyak lagi contoh lainnya.
Persamaan fungsi eksponen dan penerapannya
sumber : http://www.rumusmatematikadasar.com
Penjelasan Perbedaan Permutasi dan Kombinasi Matematika
Permutasi
Kombinasi
11! 11!5!
sumber : http://www.rumusmatematikadasar.com
Apabila kita menjabarkan bentuk (a + b)n tersebut, maka akan terlihat bahwakoefisien yang diperoleh dari bentuk tersebut sama persis dengan tiap-tiap bilangan yang ada pada setiap baris dari segitiga pascal di atas. Coba perhatikan penyederhanaan berikut ini:
1. (a + b)1 = a + b à koefisiennya adalah 1 dan 1
2. (a + b)2 = a2 + 2ab + b2 à koefisiennya adalah 1, 2, dan 1
3. (a + b)3 = (a + b)(a2 + 2ab + b2)
= a3 + 2a2b + ab2 + a2b + 2ab2 + b3
= a3 + 3a2b + 3ab2 + b3 à koefisiennya adalah 1, 3, 3, dan 1
Jika kita perhatikan, pola bilangan tersebut sebenarnya adalah koefisien dari expansi pangkat binomial, coba kalian perhatikan contoh berikut ini:
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4
artinya, pada i=4 diperoleh koefisien dari expansi pangkat binomial 4 yaitu 1, 4, 6, 4, dan 1 yang ternyata adalah bilangan-bilangan yang mengisi baris ke-4 pada sebuah segitiga Pascal. Sekarang coba perhatikan Teorema Binomial di bawah ini:
Dari penguraian rumus diatas, dapat disimpulkan secara umum bahwasannya barisan bilangan yang ada pada baris i=k di dalam sebuah segitiga Pascal dapat dituliskan menjadi seperti berikut ini:
Dari pola di atas juga bisa diperoleh sebuah rumus baru yang dapat digunakan untuk menentukan bilangan a i, j yang merupakan bilangan yang ada pada baris ke-i dan kolom ke-j seperti berikut ini:
Dari penjabaran rumus tersebut, kita dapat menuliskan barisan bilangan yang ada pada diagonal ke-d menjadi sebagai berikut:
sumber : http://www.rumusmatematikadasar.com
Buatlah terlebih dahulu analisis pendahuluan yang meliputi:
Menentukan koordinat titik-titik potong kurva dengan sumbu-sumbu koordinat (jika koordinat itu mudah ditentukan).
(i) titik potong dengan sumbu X, dengan mengambil syarat y = 0
(ii) titik potong dengan sumbu Y, dengan mengambil syarat x = 0
Tentukan interval-interval ketika fungsi itu naik dan ketika fungsi itu turun.
Tentukan titik-titik stationer serta jenisnya : titik balik maksimum, titik balik minimum, atau titik belok horisontal.
Tentukan nilai-nilai fungsi pada ujung-ujung interval. Jika kurva itu akan digambarkan untuk semua bilangan real, maka perlu ditantukan nilai-nilai y untuk nilai x yang besar positif dan untuk nilai x yang besar negatif.
Tentukanlah beberapa titik tertentu untuk memperhalus sketsa kurva.
Langkah Kedua
Dari langkah pertama, titik-titik yang didapat kita sajikan dalam bidang cartesius.
Langkah Ketiga
Titik-titik yang telah disajikan dalam bidang Cartesius pada langkah kedua, kemudian kita hubungkan dengan mempertimbangkan naik atau turunnya fungsi. Dengan demikian, kita akan mendapatkan kurva y = f(x)
Agar kalian lebih mudah dan terampil dalam memahami cara menggambar kurva sukubanyak dengan persamaan y = f(x) maka sebaiknya perhatikan contoh di bawah ini:
Soal
Gambarlah sketsa kurva sukubanyak yang ditentukan dengan persamaan y = f(x) = 4x – x3
Cara Menjawabnya:
Langkah Pertama
(a) Koordinat titik-titik potong dengan sumbu-sumbu koordinat.
(i) titik potong dengan sumbu X, dengan mengambil y = 0
4x – x3 = 0
è x(4 – x2) = 0
è x (2 + x) (2 – x) = 0
è x1 = -2 atau x2 = 0 atau x3 = 2
Titik-titik potong dengan sumbu X adalah (-2, 0) (0, 0), dan (2, 0)
(ii) Titik potong dengan sumbu Y, dengan mengambil x = 0 diperoleh:
Y = 4(0) – (0)3 = 0
Titik potong sumbu Y adalah (0, 0)
(b) Dari f(x) = 4x – x3 maka f’(x) 4 – 3x2
f(x) naik jika f’(x) > 0 || f(x) turun jika f’(x) < 0
4 – 3x2 > 0 || 4 – 3x2 < 0
è 3x2 < 4 || à 3x2 > 4
è -2/3 √3 < x < 2/3 √3 || à x < -2/3 √3 atau x > 2/3 √3
Perhatikan diagram tanda f’(x) pada gambar berikut ini:
(c) Nilai stationer dan jenisnya
Nilai stationer dicapai apabila f’(x) = 0
4 – 3x2 > 0
à x1 = -2/3 √3 atau x2 = 2/3 √3
Nilai-nilai stationernya:
Untuk x1 = -2/3 √3 à f(-2/3 √3) = 4(-2/3 √3) – (-2/3 √3)3 = - 16/9 √3
f(-2/3 √3) = - 16/9 √3 merupakan nilai balik minimum, sebab f’(x) berubah tanda dari negatif menjadi positif ketika melewati x =-2/3 √3
Untuk x2= 2/3 √3 à f(2/3 √3) = 4(2/3 √3) – (2/3 √3)3 = 16/9 √3
f(-2/3 √3) = 16/9 √3 merupakan nilai balik maksimum, sebab f’(x) berubah tanda dari positifmenjadi negatif ketika melewati x = 2/3 √3
Jadi titik balik maksimumnya (2/3 √3), 16/9 √3) dan titik balik minimumnya (-2/3 √3), -16/9 √3)
(d) Untuk x besar maka y = f(x) = 4x – x3 dekat dengan -x3
Jika x besar positif, maka y besar negatif
Jika y besar negatif maka x besar positif
(e) Ambil beberapa titik tertentu untuk memperbaiki sketsa kurva.
x = -3 à y = f(-3) = 4(-3) – (-3)3 = 15 à (-3, 15)
x = -1 à y = f(-1) = 4(-1) – (-1)3 = -3 à (-1, -3)
x = 1 à y = f(1) = 4(1) – (1)3 = 3 à (1, 3)
x = 3 à y = f(3) = 4(3) – (3)3 = 15 à (3, 15)
Langkah Kedua
Beberapa titik yang diperoleh pada langkah pertama diletakkan pada bidang kartesius.
Langkah Ketiga
Titik-titik yang telah disajikan pada bidang kartesius itu kemudian dihubungkan untuk memperoleh sketsa kurva yang mulus seperti pada gambar dibawah ini:
Dalam hal ini perlu juga diperhatikan pula naik turunnya fungsi pada interval-interval yang telah ditentukan pada langkah 1 bagian (b)
sumber : http://www.rumusmatematikadasar.com
untuk lebih memahami apa yang dimaksud dengan barisan geometri perhatikan contoh berikut:
3, 9, 27 , 81, 243, ...
barisan di atas adalah contoh barisan geometri dimana setiap suku pada barisan tersebut merupakan hasil dari perkalian suku sebelumnya dengan konstanta 3. maka bisa disimpulkan bahwa rasio pada barisan di atas adalah 3. rasio pada suatu barisan dapat dirumuskan menjadi:
r = ak+1/ak
dimana ak adalah sembarang suku dari barisan geometri yang ada. sementara ak+1 adalah suku selanjutnya setelah ak.
untuk menentukan suku ke-n dari sebuah barisan geometri, kita dapat menggunakan rumus:
Un = arn-1
dimana a merupakan suku awal dan r adalah nilai rasio dari sebuah barisan geometri.
Mari kita pelajari penggunaan rumus-rumus barisan geometri di atas dalam menyelesaikan soal:
Contoh Soal dan Pembahasan Barisan Geometri
Contoh Soal 1
Sebuah Bakteri mampu melakukan pembelahan diri menjadi 4 setiap 12 menit. berapakah jumlah bakteri yang ada setelah 1 jam apabila sebelumnya terdapat 3 buah bakteri?
Penyelesaian:
a = 3
r = 4
n = 1 jam/12 menit = 60/12 = 5
Masukkan ke dalam rumus:
Un = arn-1
U5 = 3 x 45-1
U5 = 3 x 256 = 768 bakteri
Pengertian dan Rumus deret Geometri
Deret geometri dapat diartikan sebagai jumlah dari n suku pertama pada sebuah barisan geometri. apabila suku ke-n dari suatu barisan geometri digambarkan dengan rumus: an = a1rn-1, maka deret geometrinya dapat dijabarkan menjadi:
Sn = a1 + a1r + a1r2 + a1r3 + ... + a1rn-1
Apabila kita mengalikan deret geometri di atas dengan -r, lalu kita jumlahkan hasilnya dengan deret aslinya, maka kita akan memperoleh:
Setelah diperoleh Sn - rSn = a1 - a1rn maka kita dapat mengetahui nilai dari suku n pertama dengan cara berikut ini:
Berdasarkan kepada hasil perhitungan di atas, maka dapat disimpulkan bahwa rumus jumlan n suku pertama pada sebuah barisan geometri adalah:
Perhatikan cara menggunakan rumus tersebut pada contoh soal di bawah ini:
Contoh Soal Deret Geometri
Contoh Soal 2
Tentukanlah jumlah 8 suku pertama dari barisan geometri 2, 8, 32, ...
Pembahasan:
a = 2
r = 4
n = 8
Sn = a (1-rn) / (1-r)
Sn = 2 (1-48) / (1-4)
Sn = 2 (1-65536)/ (-3)
Sn = 2 (-65535)/ (-3)
Sn = 2 x 21845
Sn = 43690
sumber : http://www.rumusmatematikadasar.com
sumber : http://www.rumusmatematikadasar.com
Yang dimaksud sebagai mean dari sekumpulan data adalah total jumlah keseluruhan data yang dibagi dengan banyaknya data yang ada. Apabila terdiri atas n, yaitu x1, x2, x3, … xn maka mean dari data tersebut dapat dirumuskan seperti berikut ini:
Contoh Soal dan Penyelesaian:
Nilai rata-rata ulangan harian matematika dari 19 orang siswa adalah 65. Apabila nilai Bejo digabungkan ke dalam kelompok nilai tersebut, maka nilai rata-ratanya berubah menjadi 66. Berapakah nilai ulangan harian matematika yang diperoleh Bejo?
Penyelesaian:
Nilai ulangan harian Bejo: x
Jumlah nilai ulangan harian sekarang = 19 x 65 + x = 1.235 + x
Banyak data sekarang = 19 + 1 = 20
Mean terakhir = 1.235 + x
20
66 = 1.235 + x
20
66 x 20 = 1.235 + x
1.320 = 1.235 + x
X = 1.320 – 1.235
X = 85
Maka dapat disimpulkan bahwa nilai ulangan harian yang diperoleh Bejo adalah 85.
Median/Nilai Tengah
Di dalam mencari median, data yang diperoleh harus diurutkan terlebih dahulu dari yang paling kecil ke yang paling besar. Perhatikan nilai ulangan matematika yang diperoleh Hasty berikut ini:
80 85 90 88 94 99 87
Nilai tersebut dapat diurutkan menjadi:
80 85 87 88 90 94 99
Setelah nilai tersebut diurutkan coba kalian perhatikan nilai manakah yang berada tepat di tengah-tengah? Nilai yang tepat terletak ditengah-tengah adalah 88. Nilai itulah yang kita sebut sebagai median dari suatu data. Jadi, dapat ditarik kesimpulan bahwa median adalah nilai yang letaknya tepat ditengah-tengah dari sebuah data yang telah diurutkan.
Perlu diingat bahwa apabila banyaknya data adalah ganjil, maka median adalah nilai yang berada tepat ditengah data tersebut setelah diurut. Namun, apabila banyaknya data adalah genap maka median adalah mea (nilai rata-rata) dari dua bilangan yang berada di tengah-tengah data tersebut setelah diurut.
Contoh Soal dan Penyelesaian:
Tentukan median dari data berikut:
12 13 17 11 10 15
Penyelesaian:
Banyak data tersebut adalah genap, sete;ah diurutkan diperoleh:
10 11 12 13 15 17
Karena datanya genap maka mediannya adalah 12 + 13 : 2 = 12,5
Modus
Di dalam sebuah proses pengumpulan data, biasanya akan didapatkan hasil yang bervariasi. Ada data yang muncul hanya sekali da nada juga data yang muncul berkali-kali. Data yang paling sering muncul itulah yang disebut sebagai Modus.
Contoh Soal dan Penyelesaian:
Tentukanlah modus dari data-data berikut ini:
a. 4, 6, 5, 7, 5, 8, 5, 6, 7
b. 1, 3, 2, 4, 2, 3, 5
c. 1, 10, 7, 8, 4, 3, 5, 9
Penyelesaian:
a. angka 5 muncul 3 kali pada data tersebut, maka modusnya adalah 5
b. angka 2 dan 3 memiliki frekuensi yang sama (muncul 2 kali) maka modus dari data tersebut adalah 2 dan 3. Data yang modusnya ada dua disebut sebagai bimodus.
c. karena masing-masing data memiliki frekuensi yang sama maka tidak ada modus.
sumber : http://www.rumusmatematikadasar.com
Batas-Batas Nilai Peluang
sumber : http://www.rumusmatematikadasar.com
maka A = {1, 3, 5, 7, 9, 11, 13}
- B merupakan himpunan bilangan genap antara 1 dan 13
maka B = {2, 4, 6, 8, 10, 12}
Tiap-tiap objek ataupun benda yang berada di dalam kurung kurawal adalah anggota dari himpunan tersebut. Anggota himpunan biasa disebut juga sebagai elemen yang dinotasikan dengan lambang ∈. Sedangkan objek-objek ataupun benda yang tidak termasuk kedalam suatu himpunan dapat dianggap bukan anggota dari himpunan tersebut dan biasanya dinotasikan dengan lambang ∉.
Jumlah anggota dari suatu himpunan basanya dinyatakan sebagai n. Apabila C = {2, 3, 5, 6, 7, 8, 9, 11} maka banyaknya anggota himpunan B dituliskan sebagai n(C) = 8.
Di dalam matematika, himpunan bilangan tertentu biasanya dilambangkan atau dinotasikan dengan menggunakan huruf kapital tertentu, contohnya:
Contoh soal Notasi dan Anggota Himpunan
a. A adalah himpunan hewan laut.
b. K adalah hmpunan bilangan cacah yang kurang dari 10
c. M adalah himpunan nama bulan yang diawali dengan huruf J.
Jawab:
a. Anggota himpunan hewan laut adalah ikan, gurita, cumi-cumi, kerang, dst. Maka, A = {ikan, gurita, cumi-cumi, kerang,... dsb.}
b. Anggota himpunan bilangan cacah yang kurang dari 10 adalah 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Maka, K = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
c. Anggota himpunan nama bulan yang diawali dengan huruf J adalah Januari, Juni, dan Juli. Maka, M = {Januari, Juni, Juli}
sumber : http://www.rumusmatematikadasar.com
Pengertian, Rumus dan Contoh Himpunan Bagian
Rumus dan Contoh Himpunan Bagian
sumber : http://www.rumusmatematikadasar.com
Pecahan biasa adalah pecahan yang pembilang dan penyebutnya berupa bilangan bulat. Contohnya:
1/3, 2/7, 3/4, dsb.
2. Pecahan Murni
Suatu pecahan bisa disebut sebagai pecahan murni apabila pembilang dan penyebutnya berupa bilangan bulat dan nilai pembilangnya lebih kecil dari penyebut. Contohnya:
1/8, 2/10, 3/16, dsb.
3. Pecahan Campuran
Pecahan ini merupakan kombinasi dari bagian bilangan bulat dan bagian pecahan murni, contohnya:
4. Pecahan Desimal
Merupakan pecahan yang penyebutnya adalah 10, 100, 1000, dst. Yang kemudian dinyatakan dengan tanda koma. Contohnya:
4/10 = 0,4
56/100 = 5,6
3500/1000 = 3,5
5. Persen atau Perseratus
Pecahan yang penyebutnya adalah 100 dan dinyatakan dengan lambang %, contohnya:
7% = 7/100
20% = 20/100
75% = 75/100
6. Permil atau Perseribu
Pecahan yang penyebutnya adalah 1000 dan dinyatakan dengan lambang %%, contohnya:
5%% = 5/1000
14%% = 14/1000
102%% = 102/1000
sumber : http://www.rumusmatematikadasar.com
sumber : http://www.rumusmatematikadasar.com
Contoh Soal 1:
sumber : http://www.rumusmatematikadasar.com